WORLD-CLASS FLOATING SOLAR SOLUTION PROVIDER

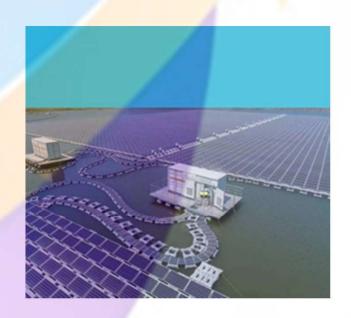
By dedicating to the research and development of solar photovoltaic floating mounting systems, technological innovation and manufacturing. Floating systems are modular in design, made of high density polyethylene, pollution free and environmentally friendly, with excellent weather resistance and over 25 years of real life. Bosch strives to become the leading supplier of floating solar solutions.

With lots of patents:

Varieties of production equipment:

ISO 9001 : 2015 quality system:

TUV certification (with REACH & ROHS);


CPVT certification on_material and product

Factory was founded in 2014, devoted to solar photovoltaic floating platform and docking system solution, with full R&D, manufacture, sales and service.

FEATURES

Modular design, Easy to assemble 15% - 20% more power output 100% Recyclable floats 25 – year service life Self-Adapt to water level fluctuation Save lands

Over 12 Beaufort scale Typhoon

Resistance

FOATING SOLAR TECHNOLOGY

INTRODUCTION

Pond

Subsidence water area of coal mineral

Industrial wastewater pond

Reservoir & Lake

FEATURES

Modular design, Easy to assemble

15% - 20% more power output

100% Recyclable floats

25 - year service life

Self-Adapt to water level fluctuation

Save lands

Over 12 Beaufort scale Typhoon Resistance

Advantages

Modular Design

Simple And Fast Installation.

Low O & M

Enhanced HDPE

Double Glass Compatible

PV Module 150 Angle

Adapt To different latitude

High Power Output

UV Free Structure Design

Long Life Time

Low OPEX

Double Glass Compatible

High Power Output Low Deterioration

Product Performance

Anti-seepage and hydrolysis resistant

Anti - UV, anti - aging, anti - stress cracking

Food grade material, eco - friendly material

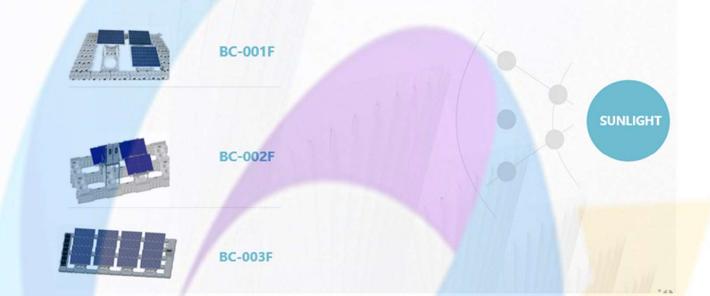
Strong anti-fatigue and anti - wind performance

10 years quality warranty

Over 25 years of actual lifetime

Strong bearing capacity, stab resistance

Non - skid, non - slip surface, non - loosen modular connecting

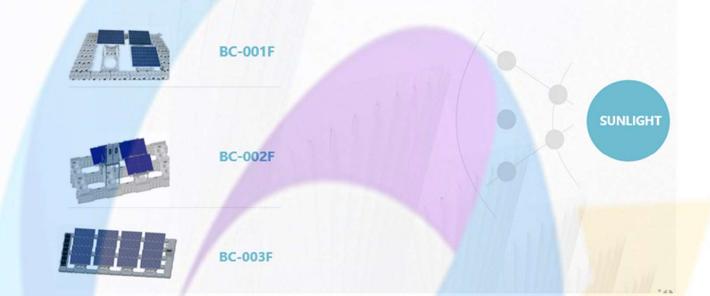


I ROADMAP IN BOSCH

INNOVATION ADVANTAGES

Combiner box

BC-002F

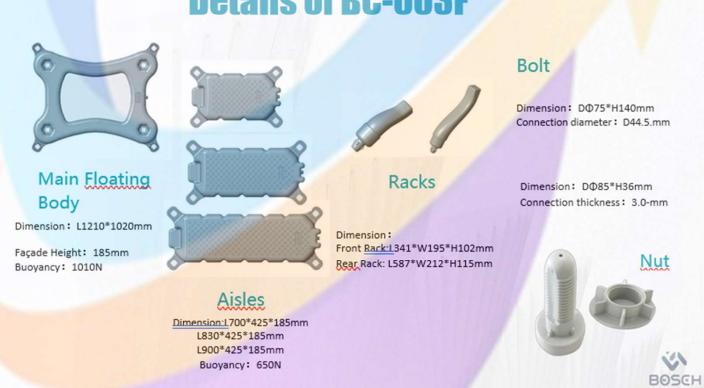


I ROADMAP IN BOSCH

INNOVATION ADVANTAGES

Combiner box

BC-002F



Details of BC-003F

INNOVATION

BC-001F

- Modular Design, Easy to Assemble.
- High adaptability. Meets the different layout requirements.
- PV Module 300mm higher than water surface.

The nozzle of the float be designed on 1/4~1/3 of the total height, and is protected by ultrasonic welding + rubber cover is adopted to reduce the risk of water leaking into the float.

BC-003F

Long and short aisle matching, meets the different length of PV modules.

The spacing between two racks much wider, reduce the risk that the PV modules crashing.

The crossover between the aisles reduces the force on the connecting lug and increases the surface strength of the float

Effectively optimize the control cost

HDPE

Item (acc. to standard for days / caron)	Specification
Base Specification: (Mix with base HDPE)	The floating material: HDPE
	Density (test acc. to ISO 1183.1): 0.946 g/ cm ³ MFR, Condition 190 °C/ 5.00kg: 0.390 g/ 10 min
Mechanical Characteristics of Initial materials	Stress at break: 29.8 Mpa
	Elongation at break: 660 %
	Charpy impact properties: 82.0 KJ/m²
	Determination of flexural properties: 831 Mpa
Shore D Hardness:	63 IRHD
Flame Class:	HB
Liquid chemical species for test for the determination of the effects of immersions in liquid chemicals (Soak for 168h):	Mineral oit; Ethananol(97%); Sodium hydroxide saturated solution; 5% hydrochloric acid.
Environmental Stress-Cracking of Ethylene Plastics:	F ₈₉ 1000
ROHS:	Technical Indicator (mg/kg): Cadmium (Cd) ≤ 100, Lead (Pb) ≤ 1000, Mercury (Hg) ≤ 1000, Hexavalent Chromium (Cr VI) ≤ 1000,
	Polybrominated biphenyls (PBBs)≤1000, Sum of PBDEs≤ 1000
Safety evaluation of equipment in drinking water system:	(Soak for 720h): Pass
Weather resistance test items:	Damp heat (85°C, 85%RH, 1500h)
	UV test, cumulative irradiation: 1800 kWh/lm² acc. to IEC 61215:2005.
The oxidation induction time:	>200.0 min (Aging resistant HDPE) 155.58 min (Mix with base HDPE)
Glow-wire flammability Index:	850°C/3.0
Process type and technical data of Polymeric material used in Floating Body:	See 'remark'
Remark:	
The test material was mixed with aging resistant HDPE and base HD	DC .
THE REST HEREIGN WAS HIMED WITH AGING TOSISCHIC TUPE ON DOSE TO	T lin
Detailed formula information are as follows.	

OTHER PRODUCTS

Walkway float
Floating box
Floating cylinder
Rooftop

Floating Solar System

1

Eloating Subsystem

Elasting For PV Module, Walkway And Cable Route
Elasting for Electrical And Control Equipment

Mooring Subsystem

Mooring For PV Module, Walkway, And Cable Route
Mooring For Electrical And Control Equipment

3

Wiring Subsystem

LV AC / DC Cable Wring MV/ HV Cable Wring

Grounding Subsystem

Solar Array Grounding

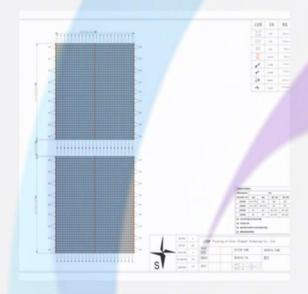
Electrical And Control Equipment Grounding

5

Substation Subsystem

Central inverter float platform

String inverter



Floating Solar System Design

3_6 M W Project Reference Design

N Q	Category	Parameter
1	Arrax Capacity	3.6MW 405WP, 27piece
2	PV Module Specification	modules chained in to one line
3	PV Module Quantity	8856PCS
4	Pontoon	N/A
5	Equipment Stand	N/A

DESIGN CONDITION

Waters&u ovex =	Highest Water Level <u>m</u>		23		
	Loxxest Water Lexel		17.8		
	Averaged Water Level m		20.4		
	Water Level Change	5.2	Water Level Change Frequency		
	Max Water level (Past 50 Years)		Max Water Flow Velocity <u>m</u> /s		
	Max Wave Height m	0.2	Waters Condition		
Geological Condition	Sedimentation Height		Waters Topographx		
Weather Condition	Max Wind Speed m/s	36.1	Max Snow Cover		
	Hightest and Lowest Jemperature°C		Annual Bainfallmm		

25 Year Life Time

0 & M

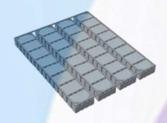
Hydrologic and Sink Date

Economic and Reliable

Easy to Installation and Maintenance

Adjustable to Water Level Fluctuation

Suitable Grounding Equipment



ELECTRICAL EQUIPMENT

Floating box platform

For large water area and subsidence area

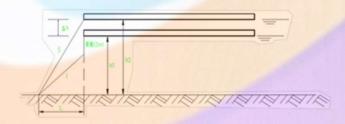
Floating box platform

Pre-formed concrete floating platform

Pre-formed concrete floating platform

For large water area and subsidence area

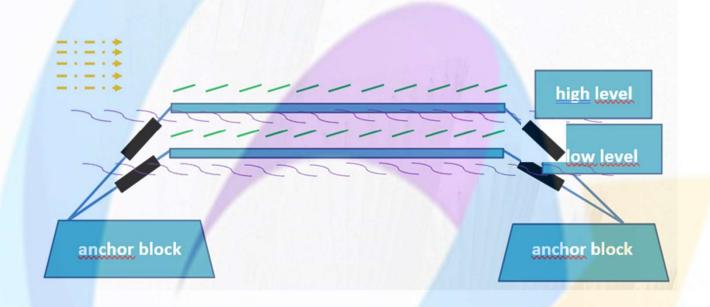
Bearing capacity


Overturning force

Anchorage connection force, etc.

MOORING SUBSYSTEM

- Extreme Historical water level within 50 years (m)
 - o Capacity <30MW, research water level in 30 years.
 - Capacity > 30MW, research water level in 50 years.
- Water level variation



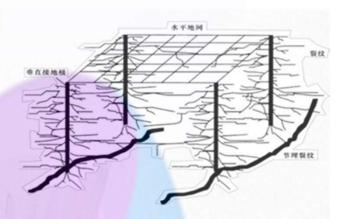
MOORING SUBSYSTEM

WIRING SUBSYSTEM

Cablepreferredtobefix edonthefloatswithcab letray

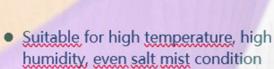
Waterlevelfluctuation should be considered

Reliable flameretard antmeasures



GROUNDING SUBSYSTEM

- True ground and protective grounding in one grounding network
- Reliable grounding measures
- Anti corrosion measures for high temperature and high humidity



Central inverter float platform

String inverter

- PI D protection
- RC D protection
- Cut- off switch
- High reliability
- A ntj elec tr ic al sh oc k d esig n and measures

INVERTER

EQUIPMENT

Floating Solar system Installation

LAYOUT

FLOATING

6KW floating system + 1MW ground system in Thailand China

40MW floating system in Shandong,

ROOFTOP

148KW roof system in Hongkong

3MW roof system in Australia

5MW floating solar farm in Shandong China

20MW floating solar farm in Anhui China

4.2MW floating solar farm in Shandong China

1MW floating solar farm in Saitama, Japan

800KW roofton solar farm.
in China

1.48KW floating solar farm on waste nond in Jiangsu China

